
Hyperliquid System Architecture and Components
Hyperliquid is a layer‐1 blockchain purpose‑built for on‑chain trading. It uses a custom HyperBFT Proof‐of‐
Stake consensus (inspired by HotStuff) to achieve sub-second finality . Crucially, the blockchain state is
split into HyperCore and HyperEVM components . HyperCore implements a fully on-chain decentralized
DEX and clearing engine (spot and perpetual order books with margin, liquidations, etc.), while HyperEVM
provides a general-purpose EVM execution environment on top of the same consensus . These
layers are depicted in the Hyperliquid stack diagram below.

Figure: The Hyperliquid stack – HyperBFT consensus underpins two execution layers: HyperCore (trading engine
and financial primitives) and HyperEVM (general smart contracts). Each layer exposes functions (oracles,
orderbooks, vaults, lending, governance, bridges, etc.) on the unified chain.

HyperCore and HyperEVM share a single deterministic ledger and consensus, meaning they are not
separate chains . In practice, blocks contain both HyperCore actions and EVM transactions. Blocks
are finalized in one step (by HyperBFT), with no re-orgs, enabling ultra-low latency (≈0.2s median) and high
throughput (≈200k+ orders/sec as of today). Overall, HyperCore provides the high-speed trading
engine, and HyperEVM provides the rich smart-contract environment, all on one trust-minimized
platform.

HyperCore: Trading Engine and L1 Execution

Role: HyperCore is the native L1 layer that implements Hyperliquid’s on-chain spot markets, perpetual
futures, margin accounts, and clearinghouse logic. It maintains order books, user balances, positions,
and vaults entirely on chain. Every order, trade, and liquidation is executed via consensus (no off-chain

1

1

1 2

3 4

5

1

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=Hyperliquid%20state%20execution%20is%20split,node%20software%20is%20further%20optimized
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=Hyperliquid%20state%20execution%20is%20split,node%20software%20is%20further%20optimized
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=Hyperliquid%20state%20execution%20is%20split,node%20software%20is%20further%20optimized
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview#:~:text=HyperCore%20include%20margin%20and%20matching,transactions%20achieved%20through%20HyperBFT%20consensus
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=The%20Hyperliquid%20blockchain%20features%20two,spot%20and%20perp%20order%20books
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=permissionlessly%20in%20the%20HyperCore%20spot,10x%20product%20improvement%20over%20CEXs
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview#:~:text=Latency

matchers) . This design guarantees a single consistent ordering of all trades and one-block finality,
maximizing decentralization and fairness.

Architecture: HyperCore is built from first principles for financial throughput. Key modules include:

Clearinghouse / Matching Engine: Manages orderbooks for spot and perpetual markets. Incoming
orders (limit, market, IOC, etc.) are matched on-chain, and trades are atomically settled against user
margin accounts. No off-chain orderbook is needed .
Margin and Liquidation Logic: Tracks collateral, margin tiers, and auto-liquidation. Users’ positions
are recorded on-chain. Liquidations (and auto-deleveraging) occur via the same consensus-signed
transactions as normal trades.
Oracles: On-chain price oracles feed asset prices to perps and lending protocols. Oracles run within
HyperCore for minimal latency.
Vaults (Strategy Pools): HyperCore natively supports “vaults”, which are on-chain strategy
contracts/pools that can execute market-making or other strategies. Depositors share in profits;
vault owners earn fees .
Staking and Governance: The native token (HYPE) is staked by validators and delegators to secure
the network. Staking logic (validator set rotation, rewards) runs on HyperCore.
Multi-sig Accounts: HyperCore natively supports multi-signature accounts as a built-in primitive .
An account can be converted to a multi-sig that requires m-of-n signatures (configured via special
HyperCore actions). This enhances security (e.g. for treasury keys) without relying on EVM contracts.

HyperCore does not natively run arbitrary smart-contract code. It supports only predefined actions (place
order, cancel, transfer, stake, etc.). This specialization allows extreme optimization. All HyperCore state
(balances, orders, oracles, etc.) is committed via HyperBFT, giving strong on-chain guarantees and one-step
finality . In summary, HyperCore serves as the decentralized exchange engine and L1 state
machine for financial primitives, offering deterministic execution and scalability tailored for high-
frequency trading .

HyperEVM: Smart-Contract Execution Environment

Role: HyperEVM is Hyperliquid’s integrated Ethereum‐compatible environment. It lets developers deploy
standard EVM contracts (ERC-20 tokens, DeFi protocols, NFTs, etc.) directly on Hyperliquid. Unlike a separate
chain, HyperEVM runs under the same HyperBFT consensus as HyperCore . This means smart
contracts can freely interact with HyperCore state and vice versa.

Architecture: HyperEVM has a unique dual-block architecture to balance speed and capacity . Two
block types alternate in the chain:
- Small (Fast) Blocks: Produced very frequently (initially ~every 2 seconds) with a modest gas limit (e.g. 2M
gas) . These allow rapid confirmation of transactions, ideal for user-interactive actions. - Big (Slow)
Blocks: Produced less often (e.g. every 60 seconds) with a much higher gas limit (e.g. 30M gas) . These
enable inclusion of large or complex contract calls (large contract deployments, batch operations) that don’t
need millisecond latency.

Each EVM transaction is flagged (via a per-account user setting) to target either fast or big blocks . Users
switch block mode by sending a special action (evmUserModify) on HyperCore. By separating block speed

2 1

•

2

•

•

•

6

•

• 7

2 1

1 2

3 8

9

10

10

10

2

https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview#:~:text=HyperCore%20include%20margin%20and%20matching,transactions%20achieved%20through%20HyperBFT%20consensus
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=Hyperliquid%20state%20execution%20is%20split,node%20software%20is%20further%20optimized
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview#:~:text=HyperCore%20include%20margin%20and%20matching,transactions%20achieved%20through%20HyperBFT%20consensus
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/vaults#:~:text=Vaults%20are%20a%20powerful%20and,that%20simply%20rebalance%20two%20tokens
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/multi-sig#:~:text=HyperCore%20supports%20native%20multi,to%20relying%20on%20smart%20contracts
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview#:~:text=HyperCore%20include%20margin%20and%20matching,transactions%20achieved%20through%20HyperBFT%20consensus
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=Hyperliquid%20state%20execution%20is%20split,node%20software%20is%20further%20optimized
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=Hyperliquid%20state%20execution%20is%20split,node%20software%20is%20further%20optimized
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview#:~:text=HyperCore%20include%20margin%20and%20matching,transactions%20achieved%20through%20HyperBFT%20consensus
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=The%20Hyperliquid%20blockchain%20features%20two,spot%20and%20perp%20order%20books
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=The%20HyperEVM%20brings%20the%20familiar,section%20for%20more%20technical%20details
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/dual-block-architecture#:~:text=The%20total%20HyperEVM%20throughput%20is,sequence%20of%20EVM%20block%20numbers
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/dual-block-architecture#:~:text=The%20initial%20configuration%20is%20set,deploy%20larger%20contracts%20as%20follows
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/dual-block-architecture#:~:text=The%20initial%20configuration%20is%20set,deploy%20larger%20contracts%20as%20follows
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/dual-block-architecture#:~:text=The%20initial%20configuration%20is%20set,deploy%20larger%20contracts%20as%20follows

from size, HyperEVM can be upgraded independently in each dimension (e.g. make fast blocks even faster,
increase gas in slow blocks) without a single tradeoff .

HyperEVM provides full Ethereum APIs (JSON-RPC, Web3 compatibility, accounts, and gas-paid transactions
with native HYPE gas). It includes: - State & Contracts: An on-chain state root stored in HyperCore blocks.
Developers can deploy ERC-20s, oracles, AMMs, NFTs, etc. - Precompiles/System Contracts: HyperEVM
includes special system interfaces (see below) for reading/writing HyperCore state. - Wrapped Native
Token: Because HYPE is the native chain token, HyperEVM uses HYPE as “ETH” (native gas). A canonical
“Wrapped HYPE” (WHYPE) ERC-20 contract (similar to WETH) is deployed on EVM at a fixed system address.
Users can deposit EVM HYPE into this contract and get WHYPE, or withdraw HYPE to/from it .

Because HyperEVM is part of the same chain, it can leverage the highly liquid orderbooks and assets of
HyperCore directly. For example, on HyperEVM you could call a read precompile to get a perp price or spot
balance, or invoke a write system contract to place a trade on HyperCore . In effect, HyperEVM makes
the deep financial primitives of HyperCore available as EVM “building blocks” . (At launch, HyperEVM
is in an alpha stage; not all write interfaces are live yet, but core read capabilities are functional .)

HyperCore ⇄ HyperEVM Interoperation

Since HyperCore and HyperEVM share consensus, interoperability is native. There is no inter-chain bridge
needed; instead, assets and messages flow across layers via built-in system contracts and standardized
actions .

Asset Linking and Transfer

Every HyperCore token (“spot asset”) can be linked to an ERC-20 on HyperEVM, enabling frictionless
transfers between layers . In practice: - Each HyperCore token (indexed by an asset ID) has a system
address on the EVM (addresses beginning 0x20… or special HYPE 0x22… address) . - To enable transfers,
the token deployer links the Core asset with an EVM ERC-20. The Core side must hold the full supply at the
system address and an on-chain “requestEvmContract” action is sent . The EVM contract then proves its
intent (via nonce or storage) and a finalizing action completes the link . - Core → EVM: A user calls
spotSend on HyperCore with the destination = the token’s system address. Once consensus confirms, a

system transaction emits an ERC-20 transfer(recipient,amount) on HyperEVM, crediting the user’s
ERC-20 balance . - EVM → Core: A user transfers tokens to the system address on HyperEVM (or calls the
wrapped HYPE receive). The linked contract emits a standard Transfer event. Once 2/3 of validators sign
it, a Core transaction credits the user’s HyperCore balance .

HYPE (the native token) is special. On HyperEVM, HYPE is just the gas currency (no ERC-20 wrapper). To
move HYPE from Core → EVM, one simply transfers Core HYPE to the EVM system address, which results in
raw HYPE balance on EVM (gas balance). To move HYPE back to Core, one sends an EVM transaction with
value to the HYPE system contract (address 0x222…22); this emits a log event that validators recognize to
credit the Core ledger . A canonical Wrapped HYPE (WHYPE) ERC-20 exists on EVM (like WETH) for any
contract logic needing an ERC‑20 token .

11

12 13

14 15

8 16

17 18

4 19

20 19

21

22

23

19

19

24

12 13

3

https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/dual-block-architecture#:~:text=The%20primary%20motivation%20behind%20the,simultaneous%20improvement%20along%20both%20axes
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/wrapped-hype#:~:text=A%20canonical%20system%20contract%20for,as%20wrapped%20ETH%20on%20Ethereum
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/wrapped-hype#:~:text=function%20deposit%28%29%20public%20payable%20,value%29%3B
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/interacting-with-hypercore#:~:text=The%20testnet%20EVM%20provides%20read,and%20the%20L1%20block%20number
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/interacting-with-hypercore#:~:text=A%20system%20contract%20is%20available,write%20system%20contract%20is%20attached
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=The%20HyperEVM%20brings%20the%20familiar,section%20for%20more%20technical%20details
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=permissionlessly%20in%20the%20HyperCore%20spot,10x%20product%20improvement%20over%20CEXs
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=What%20stage%20is%20the%20HyperEVM,in
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=Third%2C%20shipping%20an%20MVP%20and,hardened%20through%20real%20economic%20use
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=permissionlessly%20in%20the%20HyperCore%20spot,10x%20product%20improvement%20over%20CEXs
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers#:~:text=Transferring%20tokens%20from%20HyperCore%20to,sender%20of%20the%20spotSend%20action
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers#:~:text=Spot%20assets%20can%20be%20sent,be%20deployed%20in%20either%20order
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers#:~:text=Transferring%20tokens%20from%20HyperCore%20to,sender%20of%20the%20spotSend%20action
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers#:~:text=Every%20token%20has%20a%20system,
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers#:~:text=%2F%2A%2A%20%2A%20%40param%20token%20,interface%20RequestEvmContract
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers#:~:text=After%20sending%20this%20action%2C%20HyperCore,in%20one%20of%20two%20ways
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers#:~:text=Transferring%20tokens%20from%20HyperCore%20to,sender%20of%20the%20spotSend%20action
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers#:~:text=Transferring%20tokens%20from%20HyperCore%20to,sender%20of%20the%20spotSend%20action
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers#:~:text=Transferring%20HYPE
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/wrapped-hype#:~:text=A%20canonical%20system%20contract%20for,as%20wrapped%20ETH%20on%20Ethereum
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/wrapped-hype#:~:text=function%20deposit%28%29%20public%20payable%20,value%29%3B

Messaging and State Access

HyperEVM contracts can call into HyperCore in two ways:

Read Precompiles (EVM → Core read-only): The EVM provides precompiled contracts at addresses
0x...0800+ that let EVM code query HyperCore state. These include methods to read spot

balances, perp positions, vault equity, staking delegations, oracle prices, and the latest L1 block
number . Calls to these precompiles are included in EVM transactions and incur gas; results are
guaranteed to reflect the latest HyperCore state at block time . This allows, for example, a lending
contract to fetch XYZ/ABC prices directly from the HyperCore orderbooks via a simple Solidity call

.
System Write Contract (EVM → Core actions): On a testnet (and soon mainnet), a special system
contract at address 0x3333...3333 lets EVM contracts actually send HyperCore actions. Through a
small Solidity library (L1Write), contracts can invoke HyperCore functions like placing orders (IOC,
limit), transferring assets between spot/perp, staking, or vault operations . When such an EVM
call executes, it emits a message that the HyperCore runtime processes as a user action, enabling a
contract to participate in the DEX. (E.g. an EVM contract could programmatically liquidate an
undercollateralized loan by sending orders to HyperCore.)

Because of this tight integration, HyperCore and HyperEVM form one unified state . There is
effectively zero bridge risk between them: asset movements and messages are finalized by the same
consensus as any on-chain trade . This is a major advantage over cross-chain bridges: deploying
contracts and moving tokens between layers is permissionless and trust-minimized.

Layer Responsibilities and Use Cases

HyperCore and HyperEVM are designed for complementary purposes:

HyperCore (Trading Engine / Financial Primitives): This layer is the backbone of Hyperliquid’s
exchange. It is optimized for order execution, matching, and clearing. Use cases include:
High-frequency trading bots that place/cancel orders via HyperCore’s API or (soon) via the EVM write
interface. The sub-second finality makes strategies reliable .
Perpetual futures trading with built-in margin and funding logic. The state machine enforces margin
rules and handles liquidations on-chain.
Custom vault strategies – e.g. a market-maker can run an automated strategy using HyperCore’s
high-throughput orderbooks and allow others to deposit into the vault .
The native spot and perp market data (orderbook, price, etc.) lives here. Any application needing
the raw DEX liquidity (e.g. a custom UI or an arbitrage service) interacts with HyperCore.

Importantly, HyperCore is not Turing-complete: you cannot deploy arbitrary code here. You can only use its
predefined financial operations. This is intentional for performance and safety.

HyperEVM (General Smart Contracts): This layer is the programmable platform. Use cases include:
Token issuance and DeFi apps: Deploy ERC-20 tokens, Automated Market Makers (AMMs), lending
protocols, collateralized stablecoins, NFTs, governance DAOs, etc. These contracts operate like on
Ethereum but with instant access to HyperCore liquidity.

•

14

14

25

14

•

15

4 19

4

•

•
2 1

•

•
6

•

•
•

4

https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/interacting-with-hypercore#:~:text=The%20testnet%20EVM%20provides%20read,and%20the%20L1%20block%20number
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/interacting-with-hypercore#:~:text=The%20testnet%20EVM%20provides%20read,and%20the%20L1%20block%20number
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=As%20another%20example%2C%20a%20lending,lending%20protocol%20has%20implemented%20protocolized
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/interacting-with-hypercore#:~:text=The%20testnet%20EVM%20provides%20read,and%20the%20L1%20block%20number
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/interacting-with-hypercore#:~:text=A%20system%20contract%20is%20available,write%20system%20contract%20is%20attached
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=permissionlessly%20in%20the%20HyperCore%20spot,10x%20product%20improvement%20over%20CEXs
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers#:~:text=Transferring%20tokens%20from%20HyperCore%20to,sender%20of%20the%20spotSend%20action
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=permissionlessly%20in%20the%20HyperCore%20spot,10x%20product%20improvement%20over%20CEXs
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview#:~:text=HyperCore%20include%20margin%20and%20matching,transactions%20achieved%20through%20HyperBFT%20consensus
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=Hyperliquid%20state%20execution%20is%20split,node%20software%20is%20further%20optimized
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/vaults#:~:text=Vaults%20are%20a%20powerful%20and,that%20simply%20rebalance%20two%20tokens

Leveraging DEX primitives: For example, a new token project can deploy its ERC-20 on HyperEVM
and simultaneously launch a spot market on HyperCore in a permissionless auction . Once linked,
the token trades immediately on the core orderbook and is also usable in EVM DeFi.
Hybrid protocols: A lending or margin contract could collateralize assets, then use HyperCore’s price
feeds and orderbooks for risk management . As described in the docs, an EVM lending contract
can read real-time prices via precompiles and even liquidate positions by sending orders to
HyperCore – all in a few lines of Solidity .
General Web3 tooling: Standard wallets, explorers, and developer tooling (Solidity, Ethers.js, etc.)
work out-of-the-box on HyperEVM.

In short, build on HyperEVM when you need complex logic or standard EVM features, and you want to
exploit HyperCore’s liquidity as an on-chain primitive . Use HyperCore (via API or system calls)
when your focus is raw trading performance or using the DEX itself, especially for simple order
placement or market-making strategies . Since assets are unified, many projects will use both layers
together (e.g. token contract on EVM + trading on Core).

Decentralization and Security

Hyperliquid is a permissionless PoS network secured by a BFT consensus and economic stake. Its security
guarantees include:

HyperBFT Consensus: A partially synchronous HotStuff-based protocol. Block proposers and
committers are validators weighted by staked HYPE . A block is finalized with one round of
voting (one-block finality), provided >2/3 of stake signs. The assumption is that less than 1/3 of stake
is Byzantine at any time. This gives the typical BFT guarantees: safety unless >1/3 of validators
collude .
Validator Decentralization: Anyone meeting technical and legal requirements can apply to be a
validator in Hyperliquid’s delegation program . Validators must self-stake (min 10k HYPE) and run
reliable nodes. The Hyper Foundation also delegates to high-quality validators. A distributed set of
validators (no single entity) ensures censorship-resistance and security.
On-chain Order Execution: Unlike many “DEXs” with off-chain or centralized matching, Hyperliquid’s
order books are on-chain. There is no trusted matcher; every trade goes through consensus. This
removes operational centralization and front-running risk related to private orderflow .
Asset Custody: All user balances and positions are recorded on-chain in HyperCore state. There are
no external custodians. To withdraw assets out of the system (e.g. to Arbitrum or other chains), there
is a multi-sig/bridge process where 2/3 of validators must sign withdrawals . The Hyperliquid
bridge contracts (for external networks) have been professionally audited . Within Hyperliquid,
“transfers” between Core and EVM are just ledger moves, not external bridges.
Native Multi-sig: As a security feature, HyperCore accounts (including the Protocol’s) can be
converted to multi-sig, requiring multiple keys to authorize actions . This protects high-value
accounts (like treasury wallets) against single-key compromise without leaving the on-chain domain.
Audits and Bug Bounty: Critical components (e.g. bridge contracts) are audited (e.g. by Zellic),
and Hyperliquid runs a public bug bounty program. The openness of the code and documentation
fosters community review.

Trust Assumptions: Security rests on cryptographic keys and stake-weighted consensus. Users must trust
that the validator quorum behaves honestly. Given Hyperliquid’s open validator set and delegation, the
design’s trust assumption is similar to Cosmos or Tendermint networks: two-thirds of voting power must

•
26

•
25

25 14

•

8 16

2 1

•
27 1

27 1

•
28

•

2

•

29

30

•
7

• 30

5

https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=As%20one%20example%2C%20a%20project,10x%20product%20improvement%20over%20CEXs
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=As%20another%20example%2C%20a%20lending,lending%20protocol%20has%20implemented%20protocolized
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=As%20another%20example%2C%20a%20lending,lending%20protocol%20has%20implemented%20protocolized
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/interacting-with-hypercore#:~:text=The%20testnet%20EVM%20provides%20read,and%20the%20L1%20block%20number
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=The%20HyperEVM%20brings%20the%20familiar,section%20for%20more%20technical%20details
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=permissionlessly%20in%20the%20HyperCore%20spot,10x%20product%20improvement%20over%20CEXs
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview#:~:text=HyperCore%20include%20margin%20and%20matching,transactions%20achieved%20through%20HyperBFT%20consensus
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=Hyperliquid%20state%20execution%20is%20split,node%20software%20is%20further%20optimized
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview#:~:text=Hyperliquid%20is%20secured%20by%20HyperBFT%2C,token%20staked%20to%20each%20validator
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=Hyperliquid%20state%20execution%20is%20split,node%20software%20is%20further%20optimized
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview#:~:text=Hyperliquid%20is%20secured%20by%20HyperBFT%2C,token%20staked%20to%20each%20validator
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=Hyperliquid%20state%20execution%20is%20split,node%20software%20is%20further%20optimized
https://hyperliquid.gitbook.io/hyperliquid-docs/validators/delegation-program#:~:text=Validators%20play%20a%20critical%20role,Delegation%20Program%20is%20designed%20to
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview#:~:text=HyperCore%20include%20margin%20and%20matching,transactions%20achieved%20through%20HyperBFT%20consensus
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/bridge#:~:text=match%20at%20L142%20bridge%20can,required%20to%20unlock%20the%20bridge
https://hyperliquid.gitbook.io/hyperliquid-docs/audits#:~:text=The%20Hyperliquid%20bridge%20contract%20has,been%20audited%20by%20Zellic
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/multi-sig#:~:text=HyperCore%20supports%20native%20multi,to%20relying%20on%20smart%20contracts
https://hyperliquid.gitbook.io/hyperliquid-docs/audits#:~:text=The%20Hyperliquid%20bridge%20contract%20has,been%20audited%20by%20Zellic

not collude. Because all trading state is on-chain, users do not need to trust any off-chain service for order
execution or custody.

In summary, Hyperliquid’s decentralization stems from on-chain enforcement of all rules under a mature
PoS consensus . There is no hidden order book or centralized operator. Validators merely certify
transactions and execute state transitions, preserving integrity and fairness.

Developer Guidance: When to Use HyperCore vs HyperEVM

Building on HyperEVM: If your application needs custom smart contracts, tokens, or any Ethereum-
like functionality, use HyperEVM. It gives you full Solidity/JSON-RPC tooling and access to
HyperCore’s liquidity primitives. For example, deploy ERC-20s, AMMs, lending pools, DAOs, oracles,
and simply use the built-in precompiles to fetch HyperCore price data or the write contract to
execute trades . EVM is ideal for complex logic (e.g. collateral vaults, synthetic assets) that can
benefit from Hyperliquid’s fast markets. Also, HyperEVM is permissionless and open to all builders,
with no integration needed beyond linking assets via HyperCore actions .

Building via HyperCore: If you are developing a trading application (exchange UI, algorithmic
trader, market-maker) that primarily interacts with order books and on-chain margin, use
HyperCore’s native interfaces. HyperCore offers REST/WebSocket APIs for placing orders and reading
market state (see “API servers” docs). Using HyperCore directly gives the lowest possible latency and
highest throughput for trading logic. However, note that you will be limited to HyperCore’s existing
actions (no arbitrary code). This is suitable for high-frequency bots, liquidity provision strategies, or
anything needing the absolute fastest execution.

Combining Both: Many use-cases span both layers. For instance, to list a new token, you might
simultaneously deploy an ERC-20 on HyperEVM and register the token in HyperCore’s spot market.
Once linked, traders can immediately trade it on HyperCore, and any EVM app can handle it as a
token. Another scenario: a DeFi contract on EVM might trigger trades on HyperCore via the write
system contract (e.g. auto-liquidation in lending).

Practical Considerations: HyperEVM is currently in alpha on mainnet , so some features (like
high-throughput writes) are gradually rolling out. Developers should test in Hyperliquid’s testnet
(with faucet) and stay updated on HIPs and tooling. Importantly, because HyperCore is natively
integrated, there are no bridge fees or delays between layers: moving assets is a synchronous on-
chain process .

Recommendation Summary: Use HyperEVM whenever you need Ethereum-style programmability or to
tap HyperCore liquidity from a smart contract . Use HyperCore (via its API or native actions) when
you need to execute trades or financial primitives at the highest speed and security . In either case,
you benefit from Hyperliquid’s one unified protocol – no separate bridging or custodial trust is required.

Sources: All information above is drawn from the official Hyperliquid documentation
 and reflects the system’s design as of 2025.

2 1

•

25 14

26

•

•

• 17

4

8 25

2 1

1 2 9 3 4 19

14 15 12 13 7 30

6

https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview#:~:text=HyperCore%20include%20margin%20and%20matching,transactions%20achieved%20through%20HyperBFT%20consensus
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=Hyperliquid%20state%20execution%20is%20split,node%20software%20is%20further%20optimized
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=As%20another%20example%2C%20a%20lending,lending%20protocol%20has%20implemented%20protocolized
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/interacting-with-hypercore#:~:text=The%20testnet%20EVM%20provides%20read,and%20the%20L1%20block%20number
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=As%20one%20example%2C%20a%20project,10x%20product%20improvement%20over%20CEXs
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=What%20stage%20is%20the%20HyperEVM,in
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=permissionlessly%20in%20the%20HyperCore%20spot,10x%20product%20improvement%20over%20CEXs
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=The%20HyperEVM%20brings%20the%20familiar,section%20for%20more%20technical%20details
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=As%20another%20example%2C%20a%20lending,lending%20protocol%20has%20implemented%20protocolized
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview#:~:text=HyperCore%20include%20margin%20and%20matching,transactions%20achieved%20through%20HyperBFT%20consensus
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=Hyperliquid%20state%20execution%20is%20split,node%20software%20is%20further%20optimized
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=Hyperliquid%20state%20execution%20is%20split,node%20software%20is%20further%20optimized
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview#:~:text=HyperCore%20include%20margin%20and%20matching,transactions%20achieved%20through%20HyperBFT%20consensus
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/dual-block-architecture#:~:text=The%20total%20HyperEVM%20throughput%20is,sequence%20of%20EVM%20block%20numbers
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=The%20Hyperliquid%20blockchain%20features%20two,spot%20and%20perp%20order%20books
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=permissionlessly%20in%20the%20HyperCore%20spot,10x%20product%20improvement%20over%20CEXs
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers#:~:text=Transferring%20tokens%20from%20HyperCore%20to,sender%20of%20the%20spotSend%20action
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/interacting-with-hypercore#:~:text=The%20testnet%20EVM%20provides%20read,and%20the%20L1%20block%20number
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/interacting-with-hypercore#:~:text=A%20system%20contract%20is%20available,write%20system%20contract%20is%20attached
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/wrapped-hype#:~:text=A%20canonical%20system%20contract%20for,as%20wrapped%20ETH%20on%20Ethereum
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/wrapped-hype#:~:text=function%20deposit%28%29%20public%20payable%20,value%29%3B
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/multi-sig#:~:text=HyperCore%20supports%20native%20multi,to%20relying%20on%20smart%20contracts
https://hyperliquid.gitbook.io/hyperliquid-docs/audits#:~:text=The%20Hyperliquid%20bridge%20contract%20has,been%20audited%20by%20Zellic

About Hyperliquid | Hyperliquid Docs
https://hyperliquid.gitbook.io/hyperliquid-docs

Overview | Hyperliquid Docs
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview

HyperEVM | Hyperliquid Docs
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm

Vaults | Hyperliquid Docs
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/vaults

Multi-sig | Hyperliquid Docs
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/multi-sig

Dual-block architecture | Hyperliquid Docs
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/dual-block-architecture

Wrapped HYPE | Hyperliquid Docs
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/wrapped-hype

Interacting with HyperCore | Hyperliquid Docs
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/interacting-with-hypercore

HyperCore <> HyperEVM transfers | Hyperliquid Docs
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers

Delegation program | Hyperliquid Docs
https://hyperliquid.gitbook.io/hyperliquid-docs/validators/delegation-program

Bridge | Hyperliquid Docs
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/bridge

Audits | Hyperliquid Docs
https://hyperliquid.gitbook.io/hyperliquid-docs/audits

1 8

2 5 27

3 4 16 17 18 25 26

6

7

9 10 11

12 13

14 15

19 20 21 22 23 24

28

29

30

7

https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=Hyperliquid%20state%20execution%20is%20split,node%20software%20is%20further%20optimized
https://hyperliquid.gitbook.io/hyperliquid-docs#:~:text=The%20HyperEVM%20brings%20the%20familiar,section%20for%20more%20technical%20details
https://hyperliquid.gitbook.io/hyperliquid-docs
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview#:~:text=HyperCore%20include%20margin%20and%20matching,transactions%20achieved%20through%20HyperBFT%20consensus
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview#:~:text=Latency
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview#:~:text=Hyperliquid%20is%20secured%20by%20HyperBFT%2C,token%20staked%20to%20each%20validator
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/overview
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=The%20Hyperliquid%20blockchain%20features%20two,spot%20and%20perp%20order%20books
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=permissionlessly%20in%20the%20HyperCore%20spot,10x%20product%20improvement%20over%20CEXs
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=permissionlessly%20in%20the%20HyperCore%20spot,10x%20product%20improvement%20over%20CEXs
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=What%20stage%20is%20the%20HyperEVM,in
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=Third%2C%20shipping%20an%20MVP%20and,hardened%20through%20real%20economic%20use
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=As%20another%20example%2C%20a%20lending,lending%20protocol%20has%20implemented%20protocolized
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm#:~:text=As%20one%20example%2C%20a%20project,10x%20product%20improvement%20over%20CEXs
https://hyperliquid.gitbook.io/hyperliquid-docs/hyperevm
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/vaults#:~:text=Vaults%20are%20a%20powerful%20and,that%20simply%20rebalance%20two%20tokens
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/vaults
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/multi-sig#:~:text=HyperCore%20supports%20native%20multi,to%20relying%20on%20smart%20contracts
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/multi-sig
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/dual-block-architecture#:~:text=The%20total%20HyperEVM%20throughput%20is,sequence%20of%20EVM%20block%20numbers
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/dual-block-architecture#:~:text=The%20initial%20configuration%20is%20set,deploy%20larger%20contracts%20as%20follows
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/dual-block-architecture#:~:text=The%20primary%20motivation%20behind%20the,simultaneous%20improvement%20along%20both%20axes
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/dual-block-architecture
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/wrapped-hype#:~:text=A%20canonical%20system%20contract%20for,as%20wrapped%20ETH%20on%20Ethereum
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/wrapped-hype#:~:text=function%20deposit%28%29%20public%20payable%20,value%29%3B
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/wrapped-hype
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/interacting-with-hypercore#:~:text=The%20testnet%20EVM%20provides%20read,and%20the%20L1%20block%20number
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/interacting-with-hypercore#:~:text=A%20system%20contract%20is%20available,write%20system%20contract%20is%20attached
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/interacting-with-hypercore
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers#:~:text=Transferring%20tokens%20from%20HyperCore%20to,sender%20of%20the%20spotSend%20action
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers#:~:text=Spot%20assets%20can%20be%20sent,be%20deployed%20in%20either%20order
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers#:~:text=Every%20token%20has%20a%20system,
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers#:~:text=%2F%2A%2A%20%2A%20%40param%20token%20,interface%20RequestEvmContract
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers#:~:text=After%20sending%20this%20action%2C%20HyperCore,in%20one%20of%20two%20ways
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers#:~:text=Transferring%20HYPE
https://hyperliquid.gitbook.io/hyperliquid-docs/for-developers/hyperevm/hypercore-less-than-greater-than-hyperevm-transfers
https://hyperliquid.gitbook.io/hyperliquid-docs/validators/delegation-program#:~:text=Validators%20play%20a%20critical%20role,Delegation%20Program%20is%20designed%20to
https://hyperliquid.gitbook.io/hyperliquid-docs/validators/delegation-program
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/bridge#:~:text=match%20at%20L142%20bridge%20can,required%20to%20unlock%20the%20bridge
https://hyperliquid.gitbook.io/hyperliquid-docs/hypercore/bridge
https://hyperliquid.gitbook.io/hyperliquid-docs/audits#:~:text=The%20Hyperliquid%20bridge%20contract%20has,been%20audited%20by%20Zellic
https://hyperliquid.gitbook.io/hyperliquid-docs/audits

	Hyperliquid System Architecture and Components
	HyperCore: Trading Engine and L1 Execution
	HyperEVM: Smart-Contract Execution Environment
	HyperCore ⇄ HyperEVM Interoperation
	Asset Linking and Transfer
	Messaging and State Access

	Layer Responsibilities and Use Cases
	Decentralization and Security
	Developer Guidance: When to Use HyperCore vs HyperEVM

